martes, 12 de noviembre de 2019

Introducción a la animación por computadora

Introducción a la animación por computadora

La animación por computadora, es el formato donde se presenta información digital en movimiento a través de una secuencia de imágenes o cuadros creados o generados por computadora, se utiliza principalmente en videojuegos y películas.

Cabe destacar la diferencia entre video y animación. El video toma el movimiento continuo y lo descompone en cuadros, la animación parte de varias imágenes estáticas y las une para crear la ilusión de movimiento continuo.
Mientras más imágenes conformen una animación, esta será más real.


5.1. Historia, evolución y aplicación de la animación por computadora

La animación por computadora, comenzó entre los 40s y 50s, con la creación de una serie de películas experimentales con un dispositivo creado a partir de una antigua computadora análoga llamada Predictor Kerrinson. Dicha computadora estaba conectada por servo motores para controlar el movimiento de las luces e iluminar objetos.
 Estos fueron los primeros ejercicios de control de fotografías en movimiento, realizados por John Whitney y su hermano James. Jhon fue un animador estadounidense, compositor e inventor, actualmente es conocido como el padre de la animación por computadora.

Entre sus orígenes se encuentra la generación del primer escáner digital en 1957, desarrollada por Russell Kirsch, era un escáner de tambor; el cual servía para medir las variaciones de intensidad en la superficie de una fotografía.

En 1963 Edward Zajac produjo una de las primeras películas generadas por computadora en los laboratorios Bell, titulada A Two Gyro Gravity y Ken Knowlton desarrolló el sistema de animación Beflix (Bell Flicks), el cual fue utilizado para producir decenas de películas.

En 1965, Michael Noll creó una película 3D con la técnica de proyección estereográfica y para 1967 utilizaba su técnica para crear secuencias de títulos del cortometraje Incredible Machine y el especial de television The Unexplained.

En 1968 un grupo de físicos y matemáticos soviéticos con Nikolai Konstantinov al mando crearon un modelo matemático para determinar el movimiento de un gato, obteniendo como resultadola solución a diversas ecuaciones.

Colin Emmett y Alan Kitching desarrollaron su primer sólido renderizado a un color en 1972, para la animación del título para el especial de televisión de la BBC The Burke Special.

Creación de Antics, primer software desarrollado para crear animaciones sin lenguaje de programación, hecho por Kitching en 1973.Tambien surgió el primer largometraje que utilizo procesamiento de imágenes digitales para la película Westwold, realizada por Michael Crichton
En 1980 surge "The brave little toaster", primera caricatura en ordenador, propuesta por Lasseter a Disney. Un año después se realizó la fundación de Silicon Graphics, Inc (SGI) en 1981 por Jim Clark, dedicada a la fabricación de equipos de cómputo de alto nivel y software. Crearon el Geometry Engine transformaciones matemáticas que daban lugar a un espacio 3D

En 1981, Quantel lanzó el “Paintbox“, El primer sistema de animación para usuarios finales, diseñado para la creación y composición de contenidos gráficos y de video para la televisión.

En 1986 Steve Jobs compra la división de gráficos de PC de George Lucas y establece una empresa independiente llamada "Pixar". 

En 1989 James Cameron lanzó la película de acción submarina El Secreto del Abismo. Fue la primera película que incluyó CGI foto realista en sus escenas. 

En 1991 Disney y Pixar anuncian un acuerdo para producir "La bella y la bestia" a y "Jurassic Park" en 1993. 

En 1995 Pixar y Disney producen "Toy Story", dirigida por John Lasseter, en tres dimensiones, la cual marcó un hit en el uso de la tecnología CGI y el Sistema de Motion Control en las cámaras.
"Toy Story 2" se estrena en los cines en 1999, siendo la primera película en ser exhibida de forma digital, teniendo como director a Lasseter. Con una calidad técnica sorprendente, con gran cantidad de gráficos y fondos. Además de grandes colores y movimientos parte de sus personajes.

En el 2004 se da lugar el lanzamiento de la película "Los increíbles”. Donde se utilizó un nuevo software y la nueva tecnología “goo”. Disney y Pixar llegan al final de su contrato, por ello desaparece el 2D.

En 2008 se demuestra el alto nivel de animación y el avance de la tecnología que logra el cálculo de cada movimiento, de los personajes, en el largometraje: WALL.-E, en la escena del baile en el espacio entre EVE y WALL-E donde se mueven al ritmo de la música.

En 2011 sale la película “Cars 2" donde se aprecia el detalle que puede darse a las texturas y colores que emanan a través de la pantalla.

En 2012parecen animaciones muy realista como se pude observar en el cortometraje de "Valiente" (Brave) de los directores Mark Andrews, Brenda Chapman & Steve Purcell.

Actualmente existen numerosas tecnologias y tecnicas que permiten dar animación de formas variadas con efectos sorperendentes.Podria decirse que su aplicación estra presente en todos los campos ya que se utilizan tambien en la enseñanza de diversas areas.


Resultado de imagen para animacion historia

5.2 Tipos de animación 2D

En este tipo de animación sólo pueden moverse horizontalmente (movimientos hacia adelante y hacia atrás) y verticalmente (movimientos hacia arriba y hacia abajo). Los objetos son planos, como en una fotografía.

Resultado de imagen para animacion 2d

5.2.1 Tweening

Es un término usado específicamente para las técnicas tradicionales de animación.


5.2.2 Morphing


En el morphing de imágenes se utilizan dos efectos básicos; la deformación de la imagen, redistribuyendo sus colores y formas, y el fundido de dos imágenes, pasando de forma continúa de una a otra. Ambos efectos parten de una descomposición del espacio de la imagen en una malla de triángulos. Para especificar un cambio continuo en la forma de la imagen basta con describir cómo varía la posición de los vértices de la malla de un instante de tiempo al instante posterior.
El morphing se produce automáticamente cuando se mueven los vértices sin alterar las coordenadas de textura originales.

5.2.3 Onion skinning


es una técnica de gráficación  2D utilizada en la creación de dibujos animados y películas de edición para ver varias imágenes a la vez. De esta manera, el animador o editor puede tomar decisiones sobre cómo crear o cambiar una imagen basada en la imagen anterior en la secuencia.


5.3 Tipos de animación 3D

En este caso, los objetos también pueden moverse más cerca o más lejos de la persona que ve la animación. Tiene un nivel de calidad y detalle que lo vuelve muy cercano a las imágenes de la realidad, en algunos casos haciéndose imperceptible la diferencia entre la animación y un objeto real.

Resultado de imagen para animacion 3d

5.3.1 Cel-Shaded


Es un tipo de renderización no fotorrealista diseñada para hacer que los gráficos por computadora parezcan dibujados a mano. Las sombras planas se usan comúnmente para imitar el estilo de los cómics o dibujos animados.

5.3.2 Morph


En este caso no se trata de modificar una imagen sino la forma del objeto en tres dimensiones. Este cambio continuo puede utilizarse en animación para representar deformaciones o crear efectos visuales. Otro uso, más técnico, consiste en suavizar las transiciones entre diferentes representaciones de un mismo objeto cuando éstas tienen diferente nivel de detalle.


5.3.3 Skeletal

Se crea una representación simplificada del cuerpo del personaje, análogo a un esqueleto o a un stickman.  En personajes humanos y animales, muchas partes del modelo de esqueleto corresponden a la ubicación real de los huesos, pero la animación del modelo de esqueleto skeletal animation es también utilizada para animar otras cosas, como expresiones faciales.

Resultado de imagen para animacion 3d skeletal

5.3.4 Motion Capture


La captura de movimiento (del inglés motion capture, o motion tracking, también abreviada mocap) es una técnica de grabación de movimiento, en general de actores y de animales vivos, y el traslado de dicho movimiento a un modelo digital, realizado en imágenes de computadora.


Resultado de imagen para motion capture


5.3.5. Crowds


Esta técnica se inventó con finalidades militares para predecir la reacción de una multitud en casos de emergencia, consiste en una mejora de la Animación de Partículas.
Su principal objetivo es simular el movimiento de un gran número de objetos o personajes. Mientras se simulan estas multitudes, se toma en cuenta la interacción del comportamiento humano observado, para replicar la conducta colectiva.

Puede simular la acción de partículas distintas sobre todo tipo de materiales.
Principalmente se crean los personajes y se les dota de una inteligencia artificial: un objetivo, carácter, una manera de relacionarse con el medio

El sistema de uso civil más avanzado es el Programa Massive, que creó Weta Digital para animar a los ejércitos de El Señor de Los Anillos en la película de “Las Dos Torres”.


Resultado de imagen para animacion 3d crowds


5.4 Animación 2D o 3D controlada por el usuario

La animación por computadora (también llamada animación digital, animación computarizada, animación informática o animación por ordenador) es la técnica que consiste en crear imágenes en movimiento mediante el uso de una computadora (máquina también llamada, a veces, «ordenador»). Un programa bastante utilizado para hacer este tipo de animaciones es Blender; esta se utilizó para hacer la animación de la derecha. Cada vez más los gráficos creados son en 3D, aunque los gráficos en 2D todavía se siguen usando ampliamente para conexiones lentas y aplicaciones en tiempo real que necesitan renderizar rápido. Algunas veces el objetivo de la animación es la computación en sí misma, otra puede ser otro medio, como los diagramas de infografía, una película o un videojuego. Los diseños se elaboran con la ayuda de programas de diseño, modelado y por último renderizado.
Para crear la ilusión del movimiento, una imagen se muestra en pantalla sustituyéndose rápidamente por una nueva imagen en un fotograma diferente. Esta técnica es idéntica a la manera en que se logra la ilusión de movimiento en las películas y en la televisión.
Para las animaciones 3D, los objetos se modelan en la computadora (modelado) y las figuras 3D se unen con un esqueleto virtual (huesos). Para crear una cara en 3D se modela el cuerpo, ojos, boca, etc. del personaje y posteriormente se animan con controladores de animación. Finalmente, se renderiza la animación.
En la mayor parte de los métodos de animación por ordenador, un animador crea una representación simplificada de la anatomía de un personaje, pues tiene menos dificultad para ser animada. En personajes bípedos o cuadrúpedos, muchas partes del esqueleto del personaje corresponden a los huesos reales. La animación con huesos también se utiliza para animar otras muchas cosas, tales como expresiones faciales, un coche u otro objeto que se quiera dotar de movimiento.


Resultado de imagen para animacion 3d


miércoles, 30 de octubre de 2019

4ta Unidad

RELLENO DE POLÍGONOS


     Polígono es una figura básica  dentro de las representaciones y tratamiento de imágenes bidimencionales y su utilización es muy interesante para modelar objetos del mundo real.
     En un sentido amplio, se define como una región del espacio delimitada por  un conjunto de lineas (aristas) y cuyo interior puede estar rellenado por un color o patrón dado.
   
CASOS DE RELLENO SEGÚN SU COMPLEJIDAD
  El caso mas sencillo de relleno es el triangulo.
  Luego sigue el relleno de polígonos convexos de N-lados.
  Relleno de polígonos cóncavos.



MÉTODO DE RELLENO DE POLÍGONOS CON  COLOR


  • SCAN-LINE
  • INUNDACIÓN
  • FUERZA BRUTA
  • PATRÓN

SCAN-LINE



  Fila a fila van trazando lineas de color entre aristas.

  • para scan-line que cruce el polígono se busca en la intersección entre las lineas de barrido y las aristas del polígono.
  • Dichas intersecciones se ordenan y se rellenan a pares.


LINEA DE BARRIDO

     Es valido para polígonos cóncavos como convexos. Incluso para si el objeto tiene huecos interiores.
     Funcionan en el trozo de lineas horizontales, denominadas lineas de barridos, que intersectan un numero de veces, permitiendo a partir de ella identificar los puntos que se consideran interiores al polígono.

INUNDACIÓN

  • Empieza en un interior y pinta hasta encontrar la frontera del objeto.
  • Partimos de un punto inicial (x,y), un colo de relleno y  un color de frontera.
  •  El algoritmo va testeando los píxeles vecinos a los ya pintados, viendo si son frontera o no.
  • No solo sirven para polígonos, sino para cualquier área curva para cualquier imagen AE se usan los programas de dibujo.


FUERZA BRUTA

  • Calcula una caja contenedora del objeto.
  • Hace un barrido interno de la caja para comprobar c/pixel este dentro del polígono.
  • Con polígonos simétricos basta con que hagamos un solo barrido en una sección y replicar los demás pixeles.
  • Requiere aritmética punto-flotante, esto lo hace preciso y costoso.





RELLENO MEDIANTE UN PATRÓN

     Un patrón viene definido por el área rectangular en el que cada punto tiene determinado color o novel de gris. Este patrón debe repetirse de modo periódico dentro de la región a rellenar. Para ello debemos establecer una relación  entre los puntos del patrón y los pixeles de la figura. En definitiva debemos determinar la situación inicial del patrón respecto a la figura de tal forma que podamos establecer una correspondencia entre los pixeles interiores al polígono y los puntos del patrón.


ALTERNATIVAS PARA LA SITUACIÓN INICIAL DEL PATRÓN

Consiste en situar el punto asociado a la esquina superior izquierda del patrón en un vértice del polígono.
  1. Considerar la región a rellenar en toda la pantalla y por lo tanto el patrón se citua en el origen de esta (esquina superior izquierda).

EJEMPLO DE SCAN-LINE


  • Encontrar las intersecciones de los scanlines en el polígono.
  • Almacenar las intersecciones en alguna estructura de datos ET (edge table), de manera ordena ascendiente en Y y en X  en  buckets.
  • Rellenar los spans usando la estructura.
  • Usar algún criterio de paridad para saber cuando un intervalo debe ser rellenado o no.




Color homogéneo

La palabra homogéneo procede del griego ὁμογενής, de dónde fue tomada por el bajo latín como “homogenĕus”, integrada por “homos” que designa lo que es igual o muy similar a otra cosa, y por “genos” que referencia un género o linaje; usada en ese sentido entre los griegos, pero que en el latín comienza a extenderse su aplicación, para designar tal como hoy la entendemos, a cualquier mezcla uniforme o a toda estructura física o ideal que presente características similares.
Concepto de homogéneo
Lo homogéneo aparece como un todo uniforme, donde los elementos que lo componen se muestran indiferenciados, usándose en varios contextos:
En Química, los compuestos, son combinaciones con perfecta homogeneidad en sus elementos. Esta homogeneidad designa la propiedad de los cuerpos de presentar iguales características tanto físicas como químicas en la totalidad de sus partes. Un ejemplo puede ser el agua, integrada por oxígeno e hidrógeno, totalmente indiferenciados ambos elementos en el compuesto que forman.
Cuando dos componentes se encuentran unidos en un sistema material pero sin unión química, por lo cual cada componente mantiene su identidad, se conforma lo que se conoce como mezcla, las que pueden ser homogéneas o heterogéneas. En las primeras los componentes a simple vista no pueden reconocerse en su individualidad. Pueden citarse como ejemplos de mezclas homogéneas las del agua con el jugo de limón, la de la leche con agua, o la del agua con el cloro.
La homogeneidad también puede predicarse del color: “Pintemos toda la vivienda de un color homogéneo para poder retocar los defectos con mayor facilidad, guardando un poco de pintura”, "Si quieres preparar un color diferente mezclando dos o más tonos, trta de revolver bien la pintura para que quede homogénea"; o de los estilos: “La casa de mi madre está toda decorada en estilo inglés de modo homogéneo”.
En el ámbito social y cultural, podemos hablar de una sociedad homogénea cuando no existen diferencias significativas de clase, de edad, de gustos, de ideas, etcétera, entre sus miembros. Ejemplos: “El sistema comunista propone una sociedad homogénea sin diferencias de clases” o “Los niños de este curso son homogéneos en cuanto a sus aptitudes e intereses”.


Color Degradado

El Degradado es una técnica que está especialmente vinculado con el terreno del diseño gráfico y la maquetación, con todo lo que tiene que ver con la elaboración de imágenes o su modificación. Consiste en combinar dos colores de forma que uno va perdiendo intensidad a medida que el otro la va ganando, realizando una transición cromática suave que puede conseguir resultados muy impactantes.
Una técnica muy antigua, que se suele utilizar actualmente en aspectos como el diseño web, sobre todo para fondos, como también en la elaboración de imágenes, sobre todo las de carácter promocional. En los tiempos que corren, con el auge del Flat Design, es una buena forma de dar algo más de variedad a los entornos con algo de sutileza y siempre con estilo.
Un término muy conectado con el dibujo y la ilustración, que vuelve a estar sobre la palestra por su papel dentro también del sector digital. Cualquier grafista o diseñador ha tenido que trabajar alguna vez, o lo hará, con los degradados, de ahí que prácticamente cualquier programa relacionado con la ilustración o la edición de fotos cuente con una herramienta dedicada única y exclusivamente a ellos.
A pesar de lo útil y bueno que puede ser, combinar mal a la hora de hacer un degradado puede conseguir un efecto totalmente contrario al que se persigue. Es importante tener esto siempre en cuenta para actuar con cabeza a la hora de plantear diseños que requieran de esta técnica tan tradicional como efectiva.

Para qué sirve un Degradado

Un Degradado sirve para dar profundidad a una web, por ejemplo, para captar la atención del consumidor o hacer que esta se desvíe hacia donde se desea dentro de una imagen o de una página cualquiera de Internet. Es una técnica válida también como recurso para atraer miradas, para generar un mayor impacto en el usuario.
Las compañías pueden valerse de ello para reforzar cualquier mensaje que deseen mandar a través de un elemento gráfico, para cambiar la apariencia de su web o para sacar mejor partido de los principios del flat design. Es algo con muchas utilidades, pero todas ellas centradas en lo visual y en la mirada del consumidor.


TÉCNICAS DE SOMBREADO

  EN CIERTAS CONDICIONES, UN OBJETO CON SUPERFICIES PLANAS PUEDE SOMBREARSE EN FORMA REALISTA UTILIZANDO INTENSIDADES DE SUPERFICIE CONSTANTES. EN EL CASO DONDE UNA SUPERFICIE SE EXPONE SOLAMENTE A LA LUZ AMBIENTE Y NO SE APLICAN DISEÑOS, TEXTURAS O SOMBRAS DE SUPERFICIE, EL SOMBREADO CONSTANTE GENERA UN A REPRESENTACIÓN EXACTA DE LA SUPERFICIE.
     UNA SUPERFICIE CURVA QUE SE REPRESENTA  COMO UN CONJUNTO DE SUPERFICIES PLANAS PUEDE SOMBREARSE CON INTENSIDADES DE SUPERFICIE CONSTANTE, SI LOS PLANOS SE SUBDIVIDEN LA SUPERFICIE SE HACE LO SUFICIENTEMENTE PEQUEÑOS.

La siguiente figura muestra un objeto modelado con sombreado constante.
CON ESTE MÉTODO, LA INTENSIDAD SE CALCULA EN UN PUNTO INTERIOR DE CADA PLANO Y TODA LA SUPERFICIE SE SOMBREA CON LA INTENSIDAD CALCULADA. CUANDO LA ORIENTACIÓN ENTRE PLANOS ADYACENTES CAMBIA EN FORMA ABRUPTA, LA DIFERENCIA EN INTENSIDADES DE SUPERFICIE PUEDE PRODUCIR UN EFECTOS ÁSPERO O IRREAL. PODEMOS ALISAR LAS DISCONTINUIDADES DE INTENSIDAD SOBRE CADA SUPERFICIE DE ACUERDO CON ALGÚN ESQUEMA DE INTERPOLACIÓN.

SOMBREADO DE GOURAUD

  ESTE ESQUEMA DE INTERPOLACIÓN DE INTENSIDAD, CREADO POR GOURAUD, ELIMINA DISCONTINUIDADES EN INTENSIDADES ENTRE PLANOS ADYACENTES DE LA REPRESENTACIÓN DE UNA SUPERFICIE VARIANDO EN FORMA LINEAL LA INTENSIDAD SOBRE CADA PLANO DE MANERA QUE LO VALORES DE LA INTENSIDAD CONCUERDEN EN LAS FRONTERAS DEL PLANO. EN ESTE MÉTODO LOS VALORES DE LA INTENSIDAD A LO LARGO DE CADA LÍNEA DE RASTREO QUE ATRAVIESAN UNA SUPERFICIE SE INTERPOLAN A PARTIR DE LAS INTENSIDADES EN LOS PUNTOS DE INTERSECCIÓN DE CON LA SUPERFICIE.

   La siguiente figura demuestra este esquema de interpolación.

ESTE PROCESO SE REPITE CON CADA LÍNEA QUE PASA POR EL POLÍGONO. EN ESTE MÉTODO DE INTERPOLACIÓN  PRIMERO DEBEN APROXIMARSE LAS NORMALES A LA SUPERFICIE EN CADA VÉRTICE DE UN POLÍGONO. ESTO SE LOGRA PROMEDIANDO LAS NORMALES A LA SUPERFICIE PARA CADA POLÍGONO QUE CONTIENE EL PUNTO DE VÉRTICE, COMO SE MUESTRA EN LA SIGUIENTE FIGURA. ESTOS VECTORES NORMALES DE LOS VÉRTICES SE UTILIZAN ENTONCES EN EL MODELO DE SOMBREADO PARA GENERAR LOS VALORES DE INTENSIDAD DE LOS VÉRTICES.



 Un ejemplo de un objeto de sombreado con el método de Gouraud.


SOMBREADO DE PHONG

  ESTE MÉTODO CREADO POR PHONG BUI TUONG TAMBIÉN SE CONOCE COMO ESQUEMA DE INTERPOLACIÓN DE VECTOR NORMAL DESPLIEGA TOQUES DE LUZ MAS REALES SOBRE LA SUPERFICIE Y REDUCE CONSIDERABLEMENTE EL EFECTO DE LA BANDA DE MACH.



Aprecia la franja obscura que aparece justo a la derecha del gradiente, y la franja blanca que aparece justo a  la izquierda de éste.